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The rapid growth of sequenced genomes and discovery of numerous novel RNA species
has made the development of methods for the computational identification of genes
encoding functional RNA a high priority. Recent developments of algorithms for RNA gene
prediction are based on diverse criteria, including location of promoters and terminators,
sequence conservation among related genomes, RNA base-pairing and nucleotide

composition.

Introduction

The promise of genome sequencing has been to reveal
the complete set of genes through which the cell
performs its functions, as well as regulatory elements
that control their expression levels. To a great extent
this goal has been reached for protein genes. Powerful
computer programs such as GLIMMER, GRAIL and
GeneMark have been developed for protein gene
discovery and are routinely applied to genomic
sequences to identify all open reading frames (ORFs)
as potential protein genes. Sequence similarity is used
to infer function and confirm gene identity. Hypothe-
tical and unknown proteins are assigned as the
products of the remaining genes that lack sequence
homology to proteins of known function. The presence
of sequence homologs in other organisms confirms the
identification of hypothetical proteins even though
their function is not assigned. (See A0266; A0267.)

However, despite the recent rapid expansion in our
understanding of the function of ribonucleic acid
(RNA) in biological systems, until recently no analo-
gous programs have been developed for the identifica-
tion of genes encoding functional RNAs (fRNAs) in
genomic sequences. This omission was due to both
the conceptual underappreciation of the number and
significance of RNA genes in genomic sequences
and technical difficulties due to lack of signals within
and around RNA genes in comparison to protein
genes. (See AO008; A0985.)

Figure 1 shows these differences for procaryotic
genes. As shown, protein genes incorporate several
signals that can be used in their recognition. These
include the consensus ribosome binding (Shine—
Dalgarno) site, the appropriately spaced start and
stop codons, and a triplet-encoded ORF based on the
genetic code and corresponding to the organism’s
codon usage frequencies. On the other hand, RNA
genes contain none of these signals.

Computational prediction of fRNAs in genomic
sequences would allow experimental testing of
expression levels, functional assay by deletion or
mutagenesis, and structural analysis. These untrans-
lated fRNAs have also been referred to as noncoding
(ncRNA), small RNAs (sRNA, smRNA), untrans-
lated and small nonmessenger (snmRNA). Here they
are referred to as fRNAs.

Two recent experimental studies have identified an
unexpectedly large and diverse population of
expressed and presumably fRNA molecules. First, an
expressed sequence tag (EST)-based experimental
technique was used to generate complementary deoxy-
ribonucleic acid (cDNA) libraries from the small
fraction (50-500 nucleotides) of total RNA isolated
from mouse brain (Huttenhofer et al., 2001). This
approach resulted in the identification of a total of 201
different expressed RNA species potentially encoding
fRINA species. Of these RNAs, 113 were identified as
small nucleolar RNAs (snoRNAs), guiding modifica-
tion of ribosomal, snRNA or other RNA modifica-
tions. Most of the remainder consisted of novel RNAs
of unknown function. (See A0357.)

Several groups have used a range of biochemical
techniques, including cDNA cloning and cloning from
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Figure 1 Comparison of RNA and protein genes in procaryotes.
In the RNA gene, there are no ribosome binding sites, no start
or stop codons, and no triplet code.

ENCYCLOPEDIA OF THE HUMAN GENOME / ©2003 Macmillan Publishers Ltd, Nature Publishing Group / www.ehgonline.net 1

0271.4

0271.5

0271.6

0271.F001



Au. Qu. from

editor: Pl. chk
if change
okay.

0271.7

0271.8

0271.9

RNA Gene Prediction

selected fractions of total RNA to discover the
presence of micro-RNAs (miRNAs; for a review see
Ruvkin (2001)). These miRNAs act in a variety of
roles, including development and regulation, and were
identified in Caenorhabditis elegans, Drosophila mela-
nogaster and HeLa cells. It is expected that these
miRNAs modulate the translation or stability of
messenger RNAs (mRNAs; Lau et al, 2001). (See
A0344; A0349.)

Computational Approaches

Identification of well-characterized
RNA species

Many fRNAs are shared among organisms, such as
transfer RNA (tRNA) and ribosomal RNA (rRNA),
ribonuclease P (RNase P) RNA, snoRNAs (eucar-
yotes and archaca) and tmRNAs (bacteria). These
known RNAs can usually be identified in genomes
by sequence and/or structure similarity and conserva-
tion. Sophisticated programs such as tRNAscan-SE
and Snoscan utilize conserved sequence and/or struc-
ture patterns, covariance models and stochastic
context-free grammars (SCFGs; Eddy and Durbin,
1994) to accurately and automatically find tRNAs
(Lowe and Eddy, 1997) and snoRNAs (Lowe and
Eddy, 1999; Omer et al., 2000) in genomes. These
methods were developed to find new members of
well-characterized RNA types, but are not applicable
to the identification of novel or poorly characterized
RNA species. (See A0274.)

Formal Bayesian probabilistic models have been
introduced as tools to identify complicated consensus
features in biological sequences. Hidden Markov
models (HMM) are probably the best known of
these approaches. Another class of model, the covar-
iance model, is able to capture both primary consensus
and secondary structure information through the
use of SCFGs. Much like sequence profiles, covari-
ance models are constructed from multiple sequence
alignments. (See A0851.)

In the tRNAscan-SE program (Lowe and Eddy,
1997), sequences are searched against a given covar-
iance model using a three-dimensional dynamic pro-
gramming algorithm, similar to a Smith—Waterman
alignment but including base-pairing terms also. RNA
covariance models have the advantages of high
sensitivity, high specificity, and general applicability
to any RNA sequence family of interest. Using these
general tools, the search for a tRNA takes three steps.
Firstly, the DNA 1is screened for the presence of a
short, intergenic promoter sequence that is found in
the T and D arms of tRNA. This is followed by a
search for stem-loop structures in the location of

the promoter. The second step involves calculating a
log-odds score for conserved sequences and the
distance between. The final stage parses the output
from these programs and undertakes a probabilistic
search for tRNA. A secondary structure prediction of
any putative matches will reveal the presence of an
anticodon region. (See A0254; A0263.)

Snoscan (Lowe and Eddy, 1999) is a program that
recognizes methylation guide snoRNAs in archaeal
genomes. The program identifies six components
characteristic of the class of fRNA: box D; box C; a
region of sequence complementary to rRNA; box D9
if the rRNA complementary region is not directly
adjacent to box D; the predicted methylation site within
the rRNA based on the complementary region; and
the terminal stem base pairings, if present. The program
also takes into account the relative distance between
identified features within the snoRNA, information
that is useful in reducing the rate of false positives.

Identification of novel fRNAs

Recently, a number of studies have been undertaken to
find novel RNA genes using gene boundary prediction
(Olivas et al., 1997; Argaman et al., 2001), comparative
genomics (Argaman et al., 2001; Wassarman et al.,
2001), a combination of comparative sequence analy-
sis and probabilistic models of nucleotide mutation
bias in regions of conserved secondary structure (Rivas
et al., 2001), and contrasting sequence and structural
patterns between known RNA genes and noncoding
sequences within genomes (Carter et al., 2001). The
various approaches to computational identification of
novel RNA genes are summarized in Table 1 and
described in the following sections.

Gene boundary prediction

The prediction of potential RNA promoters and
terminators has been used to narrow the search for
potential RNAs. Parker and coworkers used a
genomics guided-search technique to find novel RNA
genes (Olivas et al., 1997). Two strategies were used in
this study. First, strong RNA polymerase 111 sites were
identified by sequence, and transcripts from these sites
were probed experimentally. Second, large gaps
between predicted ORFs were analyzed for RNA
expression. The first method identified a new, but
nonessential, 170-nucleotide noncoding RNA, and the
second method found 15 RNA transcripts, one of
which appeared to be an snoRNA. While this approach
was laborious and not comprehensive, it did show the
presence of previously unidentified RNAs in the yeast
genome. Argaman et al. (2001) used promoter and
terminator prediction methods combined with com-
parative genomics to predict potential RNA coding
regions in Escherichia coli. (See A0269.)
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Table 1 Computational approaches for the identification of novel RNA genes

Basis Method Organism Number predicted Reference

Boundary prediction CSA Yeast 16 Olivas et al. (1997)
(promoter—terminator patterns) E. coli 24 Argaman et al. (2001)
Comparative genomics — CSA E. coli 23 Wassarman et al. (2001)
sequence conservation 24 Argaman et al. (2001)
Stability of RNA NCS Archaea NA Schattner (2001)

(GC content) >200 Omer et al. (2000)
Nucleotide mutation bias SCFG/HMM E. coli 275 Rivas et al. (2001)

in conserved secondary structure

Comparison of known NN Archaea 370 Carter et al. (2001)
RNAs to noncoding SVM E. coli

non-conserved intergenic
sequences

NN: neural networks; SVM: support vector machines; SCFG: stochastic context-free grammars; HMM: hidden Markov models; CSA:
comparative sequence analysis (BlastN); NCS: nucleotide composition statistics.

Currently, the polymerase binding sites of RNA
promoters and terminator sites are not unambiguously
predicted in bacteria, archaea or eucaryotes. In
addition, due to the variable distance between
promoters and start sites, RNA processing, and the
presence of introns in eucaryotes, these signals alone
do not define the fRINA very well. Progress in this area,
combined with other approaches, will, however, be
important in improving predictive methods. For
example, an improved algorithm for prediction of
rho-independent terminators in procaryotes has been
reported recently (Lesnik er al., 2001).

Comparative genomics

Wassarman et al. (2001) have used a comparative
genomics study to identify 19 novel RNA genes in
E. coli. They examined intergenic sequences of more
than 180 nucleotides (nt) and then carried out a
BLAST search against a set of bacterial genomes.
Those that had a high degree of conservation over at
least 80 nt were further examined. After screening to
remove those that were possibly ORFs or promoters,
the remaining sequences were tested using microarray
data and traditional biochemical methods. The authors
speculate that the comparative genomics approach
may be easily applied to other organisms, although it is
noted that a high degree of conservation does not
necessarily infer the presence of an RNA gene, but
may instead be a protein binding site, control element,
insertion sequence or even a small ORF. (See A0253.)

Another comparative genomics study of E. coli
(Argaman et al., 2001) has examined intergenic
sequences and additionally attempted to identify sites
of transcription initiation or termination within them.
If the distance between the initiation and termination
sites was between 50 and 500 nucleotides then a
BLAST search of the sequence was undertaken using

three bacterial genomes for comparison. This pro-
duced 24 potential RNA genes, of which 14 were
biochemically verified. It is hypothesized that, pro-
vided the genomic and sequence features characteristic
of an fRNA can be defined in an explicit manner, then
an algorithmic approach can be used to find fRNA in
higher organisms.

An analysis of the E. coli genome has been
undertaken using a program called QRNA (Rivas
et al., 2001) that combines comparative genomics and
probabilistic methods. The program requires as input
a set of sequence alignments from closely related
organisms and then classifies the sequence as an
fRNA, a protein coding sequence or an uncorrelated
sequence region. The hypothesis is that conserved
sequence regions will show a pattern of mutation
more consistent with a probabilistic model of covar-
iation of nucleotides within base-paired secondary
structure rather than an analogous model of con-
servation of an encoded amino acid sequence (protein
coding) or the null model of uncorrelated, position-
independent mutation. While this method is entirely
general, requiring no prior knowledge about the
fRNAs of the respective genomes, it is limited to
detecting fRNAs with conserved intramolecular
structure. The method was used to identify 275
putative fRNAs in E. coli, a number of which have
been verified with biochemical methods (Rivas et al.,
2001). Testing indicated a true-positive prediction
accuracy of approximately 85% for classification of
RNAs in E. coli.

Compositional and structural characterization

Defining the features characteristic of fRNAs has led
to a great deal of recent research. A computational
approach to the identification of RNA genes has been
applied to archaeal genomes (Omer et al., 2000;
Schattner, 2001) based on the increased G+C content
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of RNA genes in hyperthermophilic organisms such as
Methanococcus jannaschii that have an AT-rich overall
genome composition. While this method appears to
have predictive value, its use is restricted to organisms
with AT-rich genome compositions. (See A0260.)

Carter et al. used machine-learning methods to
predict the presence of novel RNA genes in the E. coli
genome and several other bacterial and archaeal
genomes. In order to discriminate fRNA from back-
ground genomic sequence, a number of neural net-
works were trained. The first neural network was
trained on the single and dinucleotide composition of
known fRNAs genes and a data set of presumed
nonfunctional genomic sequence. A second network
was trained using ‘structural motifs’; these included
the well-known sequence motifs UNCG, GNRA and
CUYG found in RNA tetraloops, the AAR subse-
quence of the tetraloop receptor motif, and the DNA
sequence CTAG, which occurs rarely in bacterial
protein genes and noncoding regions compared with
RNA genes. The final parameter of this set was the
calculated free energy of folding. When a third voting-
network was trained on the combined results of the
previous networks, it achieved an overall predictive
accuracy of over 90% in bacterial genomes, over 95%
in hyperthermophilic archaeal genomes, and was
successfully able to predict a number of recently
identified fRNAs that were not included in the training
sets. (See A0268.)

Conclusion

It is evident from the work of a number of laboratories
as of the year 2002 that RNA gene prediction is an area
of intense research and that the techniques are
improving substantially. It is hoped that RNA gene
prediction can become as reliable and have the same
level of confidence as genomic protein prediction
methods, and that new biological pathways, incorpor-
ating novel regulatory, catalytic or structural RNAs,
will be identified.

Much of this recent work has concentrated on
bacterial genomes, especially E. coli. This is mainly
because of the wealth of available information about
that genome, both in terms of sequence and biological
function. A number of groups have estimated that
there are probably a further 300 RNA genes to be
found in E. coli. These same techniques are now being
applied to higher organisms, especially the human
genome, which may contain thousands of novel RNA
genes waiting to be discovered.
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